Sunday, 11 September 2011

Distances, Magnitudes and Spectral Classes Equations

m = -2.5 log I + constant

d = R / tan θp   (d = Distance (m))

θp = (t / 3600)°

θ = 2θp = W / d   (d = Distance (m))

mb - ma = 2.5 log (La / Lb)

m - M = 5 log (d / 10)      (d = Distance (parsecs))


R (Radius of Earth Orbit and 1 Astronomical Unit (AU)) = 1.5x1011 m

W (Width of Earth Orbit) = 3x1011 m

1 pc = 3.09x1016 m

1 Mpc = 3.09x1022m


m, ma, mb (Apparent Magnitude)

I (Intensity) = W m-2

θp (Angle of Parallax) = degrees

t (Time of Parallax) = s

La, Lb (Luminosity) = W

M (Absolute Magnitude)

©2011 Grant Dwyer

Monday, 5 September 2011

Lenses and Telescopes Equations

P = 1 / f 

1 / f = 1 / u + 1 / v   (Convex Lens)

1 / f = 1 / v - 1 / u   (Concave Lens)

M = θi / θo = fo / fe = β / α 

α = h / fo

β = h / fe

θ ≈ λ / D

f = fo + fe

s = r θ


P (Power) = D (Dioptres)

f (Focal Length) = cm

u (Object Distance) = cm

v (Image Distance) = cm

M (Magnification)

θi (Image Angle) = Degrees

θo (Object Angle) = Degrees

fo (Objective Lens Focal Length) = cm

fe (Eyepiece Lens Focal Length) = cm

β (Angle Subtended at Eye Using Instrument) = Radians

α (Angle Subtended at Unaided Eye) = Radians

h (Height of Object) = cm

θ (Angular Resolution) = Radians

λ (Wavelength) = m

D (Aperture) = m

r (Radius) = m

s (Distance) = m

©2011 Grant Dwyer